Guidelines to Consider When Proposing a Course for Inclusion in the General Education Core Curriculum

When considering courses for inclusion in the General Education Core Curriculum, the General Education Subcommittee follows the guidelines below to determine if a course meets the necessary standards to be included in the core. Evidence of the general education learning outcomes should be present in the course objectives and topical outline in CAPA and also in the course syllabus.

General Guidelines:
- A substantial portion of the course must address the learning outcomes for the particular core area
- There should be a deliberate attempt to make a connection between the content of the course and the learning outcomes of the particular core area
- Courses should demonstrate sufficient breadth in the content area. Faculty should consider if this was the only course a student took in that content area, would there be sufficient exposure to that area
- Courses proposed for the core do not necessarily need to be “survey” type courses. Courses can be more narrowly focused on the construction of knowledge in the discipline

Area I, Foundation Courses: Courses are specified and must comply with the University System Board of Regents policy. More advanced mathematical courses may be required for certain majors.

Area II, Physical Sciences:
- The course should provide sufficient breadth and depth of the physical sciences such that if this was the only physical science course a student took, the student would have awareness of how knowledge is constructed in the physical sciences

Area II, Life Sciences:
- The course should provide sufficient breadth and depth of the life sciences such that if this was the only life science course a student took, the student would have awareness of how knowledge is constructed in the life sciences

Area III, Quantitative Reasoning:
- The primary focus of the course should be focused on quantitative analysis; not on an area where quantitative analysis is secondary to some other course objective
- Programming courses should focus on algorithmic thinking, logic/decision structures and information storage structures
- Data science courses should involve a focus on data analysis and relationship identification. Tools of statistical analysis are introduced and used as appropriate
- Courses that emphasize historical or social aspects of technology or computing, design without algorithmic coding emphases, and on software package skills would not be acceptable

Area IV, World Languages and Global Culture:
- The course content should provide evidence of a connection to contemporary culture

Area IV, Humanities and the Arts:
- The course should engage with the material either broadly or in depth as long as the focus is on the construction of knowledge in the area

Area V, Social Sciences:
- The course should provide sufficient breadth and depth of the social sciences such that if this was the only social science course a student took, the student would have awareness of how knowledge is constructed in the social sciences